- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Prescott, Moire K_M (2)
-
Sanderson, Kelly N (2)
-
Dijeau, Audrey F (1)
-
Madson, Laura (1)
-
Way, Sandra M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Extended emission-line nebulae (EELN) around galaxies allow us to study their host galaxies and their surrounding environments. EELN can provide insights into the physical properties of the extended gas and, when powered by active galactic nuclei (AGN), they can constrain the ionization history of the central engine as well. Of interest is a sample of low-redshift EELN powered by AGN atz ∼ 0.3 that were discovered in the Sloan Digital Sky Survey (SDSS) through color selection. Colloquially called “Green Beans,” due to strong, spatially extended [Oiii]λ5007 emission dominating ther-band flux, they have been shown to be low-redshift counterparts to higher-redshift Lyαnebulae. However, only 17 Green Bean EELN are known to exist atz ∼ 0.3, and the original color selection was subsequently found to be biased in terms of host galaxy properties. In order to mitigate these biases and expand the known sample, we have developed a new, physically motivated selection approach, based on simulated EELN atz ∼ 0.3, with well-defined physical properties ([Oiii]λ5007 rest-frame equivalent width and continuum spectral slope). With this improved selection approach, we have generated a new sample of 165 EELN candidates: the “Green Chile” catalog. Of the 13 candidates with existing SDSS/Baryon Oscillation Spectroscopic Survey spectra, we confirm that five are EELN with [Oiii]λ5007 equivalent widths >200 Å and emission-line ratios indicative of AGN powering.more » « lessFree, publicly-accessible full text available March 13, 2026
-
Prescott, Moire K_M; Madson, Laura; Way, Sandra M; Sanderson, Kelly N (, Physical Review Physics Education Research)While many previous studies have indicated that encouraging a growth mindset can improve student learning outcomes, this conclusion’s applicability to college-level astronomy classrooms remains poorly understood owing to the variation in students’ overall and domain-specific learning attitudes. To address this, we surveyed undergraduate students in an introductory astronomy class about their attitudes towards learning astronomy over the course of five semesters. Overall, students felt an affinity for astronomy, felt moderately competent, perceived astronomy to be intermediate in terms of difficulty, and agreed strongly with standard statements reflecting a “growth mindset,” i.e., the belief that intelligence is malleable rather than fixed from birth. Their responses were stable over the course of the semester and did not appear to depend strongly on student demographics. The unexpected start of the COVID-19 pandemic and the associated shift to all-virtual learning correlated with a drop in their affinity for astronomy, a small decrease in their perceived competence, and an increase in the perceived difficulty of the topic. Their overall learning mindset showed negligible change during this time, emphasizing the stability of their belief in a growth mindset as compared to other measured learning attitudes. However, more nuanced questions about their behaviors and interpretations in the classroom, about how they felt “in the moment,” and about what factors were most important for their success in the class revealed significantly lower alignment with a growth mindset. This suggests that while introductory astronomy students may believe that they have a growth mindset, this mindset is not necessarily reflected in their self-reported classroom behaviors or measured responses to actual learning challenges. Published by the American Physical Society2024more » « less
An official website of the United States government
